Predictive Market Analytics
1. Collecting Marketplace Data for Predictive Modeling
import requests
import pandas as pd
from datetime import datetime, timedelta
api_key = "YOUR_API_KEY"
marketplace_url = "https://api.clore.ai/v1/marketplace"
historical_prices_url = "https://api.clore.ai/v1/historical_prices"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
def fetch_marketplace_data():
response = requests.get(marketplace_url, headers=headers)
return response.json().get("servers", [])
def fetch_historical_data(server_id, days=30):
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
payload = {"server_id": server_id, "start_date": start_date.isoformat(), "end_date": end_date.isoformat()}
response = requests.post(historical_prices_url, headers=headers, json=payload)
return response.json().get("prices", [])
# Fetching and structuring marketplace data for modeling
market_data = fetch_marketplace_data()
historical_data = [fetch_historical_data(server['id']) for server in market_data]
print(f"Historical Data Sample: {historical_data}")2. Demand Prediction Using Time-Series Analysis
3. Pricing Optimization Through Predictive Modeling
4. Spot Price Prediction with LSTM Neural Networks
5. Implementing Market Sentiment Analysis for Pricing Insights
6. End-to-End Automation for Market Analysis and Spot Price Optimization
Last updated