Section: Marketplace Automation and Resource Optimization
Marketplace Automation and Resource Optimization
In this article, we’ll explore ways to automate marketplace operations and optimize resource usage within Clore.ai’s API. This involves monitoring available servers, dynamically adjusting pricing, and balancing load across multiple servers. These automation techniques help developers manage resources efficiently, reduce costs, and maximize uptime.
1. Automated Server Retrieval and Load Balancing
import requests
api_key = "YOUR_API_KEY"
url = "https://api.clore.ai/v1/marketplace"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
def get_available_servers():
response = requests.get(url, headers=headers)
return [server for server in response.json().get("servers", []) if server["online"]]
def balance_load(servers):
for server in servers:
print(f"Server {server['name']} is available with specs: {server['specs']}")
# Retrieve and balance load across available servers
available_servers = get_available_servers()
balance_load(available_servers)
2. Dynamic Spot Price Adjustment Based on Demand
import time
spot_price_url = "https://api.clore.ai/v1/set_spot_price"
min_price = 0.000001
max_price = 0.00001
def adjust_spot_price(server_id, desired_price):
payload = {"order_id": server_id, "desired_price": desired_price}
response = requests.post(spot_price_url, headers=headers, json=payload)
return response.json()
# Adjust spot price every hour based on demand
while True:
for server in available_servers:
price = min_price if server["rented"] else max_price
result = adjust_spot_price(server["id"], price)
print(f"Adjusted price for server {server['name']}: {result}")
time.sleep(3600)
3. Monitoring Server Uptime and Notifying on Downtime
import smtplib
from email.mime.text import MIMEText
def send_email_alert(server_name):
msg = MIMEText(f"Server {server_name} is down!")
msg["Subject"] = "Server Downtime Alert"
msg["From"] = "alert@clore.ai"
msg["To"] = "admin@yourdomain.com"
with smtplib.SMTP("smtp.yourmail.com", 587) as server:
server.starttls()
server.login("your_email", "your_password")
server.send_message(msg)
# Monitor servers and notify if any goes offline
for server in available_servers:
if not server["online"]:
send_email_alert(server["name"])
4. Cost Optimization with Pricing Models
import random
def determine_optimal_price(server_id, profitability_factor=2):
profitability_url = f"https://api.clore.ai/v1/server_profitability/{server_id}"
response = requests.get(profitability_url, headers=headers)
profitability = response.json().get("profit", 0)
optimal_price = profitability * profitability_factor
return min(optimal_price, max_price)
# Set prices for servers based on profitability
for server in available_servers:
optimal_price = determine_optimal_price(server["id"])
adjust_spot_price(server["id"], optimal_price)
print(f"Set optimal price for {server['name']}: {optimal_price}")
5. Auto Scaling Servers Based on Demand
def auto_scale_servers(threshold=0.8):
high_demand_servers = [
server for server in available_servers
if server["rental_status"] == 2 and server["pricing"]["usd"] > threshold
]
for server in high_demand_servers:
new_server_id = clone_server(server["id"])
print(f"Cloned server {server['name']} to handle demand as {new_server_id}")
# Clone server for auto-scaling
def clone_server(server_id):
clone_url = f"https://api.clore.ai/v1/clone_server/{server_id}"
response = requests.post(clone_url, headers=headers)
return response.json().get("new_server_id")
auto_scale_servers()
6. Predictive Analysis for Pricing Adjustments
import numpy as np
from sklearn.linear_model import LinearRegression
def predict_demand_price(data):
X = np.array(data["time"]).reshape(-1, 1)
y = np.array(data["price"])
model = LinearRegression()
model.fit(X, y)
next_price = model.predict([[len(X) + 1]])
return next_price[0]
# Predict demand-based price adjustments
historical_data = {"time": [1, 2, 3, 4, 5], "price": [0.00002, 0.000021, 0.000025, 0.00003, 0.000032]}
next_price = predict_demand_price(historical_data)
print("Predicted next price:", next_price)
7. Automated Price Reduction on Low Demand
def reduce_price_on_low_demand(server_id):
low_demand_price = 0.000005
return adjust_spot_price(server_id, low_demand_price)
# Apply reduction for servers with low demand
for server in available_servers:
if not server["rented"]:
reduce_price_on_low_demand(server["id"])
print(f"Reduced price for {server['name']} due to low demand")
8. Automated Server Deactivation During Maintenance
def deactivate_server(server_id):
deactivate_url = f"https://api.clore.ai/v1/deactivate_server/{server_id}"
response = requests.post(deactivate_url, headers=headers)
print(f"Deactivated server {server_id} for maintenance")
# Deactivate servers in need of maintenance
for server in available_servers:
if server["specs"]["disk_speed"] < 500:
deactivate_server(server["id"])
9. Utilizing Server Statistics for Optimization
def retrieve_server_stats(server_id):
stats_url = f"https://api.clore.ai/v1/server_stats/{server_id}"
response = requests.get(stats_url, headers=headers)
return response.json()
# Retrieve and analyze stats for optimization
for server in available_servers:
stats = retrieve_server_stats(server["id"])
print(f"Stats for server {server['name']}: {stats}")
10. Automated Redispatching of Idle Servers
def redispatch_idle_servers():
idle_servers = [server for server in available_servers if not server["rented"]]
for server in idle_servers:
optimal_price = determine_optimal_price(server["id"], profitability_factor=1.5)
adjust_spot_price(server["id"], optimal_price)
print(f"Redispatched idle server {server['name']} at price: {optimal_price}")
redispatch_idle_servers()
This article presents an array of automation techniques to enhance server management and resource optimization on the Clore marketplace. By implementing these methods, you can ensure efficient resource allocation, maximize profitability, and improve the overall stability of your operations.